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Abstract

The work is devoted to study of supercompressibility effect, i.e. anomaly
of elasticity, when Poisson’s ratio become negative.

The numerical results provide the conclusion that structural modelling of
granular media, honeycomb structures and foams demonstrates the phenomena
mentioned above. The new localization method of structural unity creation and
controlling has been developed for elasitic and non-elastic properties prediction.

Introduction

The absolute majority of raw materials and artificial composites
demonstrates nonlinearity of elastic behaviour [1] and some of them having
unusial elasic properties, such as supercompressible isotropic foams [2]. The
remarkable anomaly of deforming process may be produced when we have the
specific combination of geometry and loading conditions of structural unity [3].

1. The localization method

The deformation properties of composite forming by conjoint bodies
materials combination depend on interface mechanical characteristics.
Particularly, the study of deforming process for granular solids interacting by
presence of reversible frictional and adhesion forces includes the problem of free
boundary, i.e. creation and evolution of zones with different boundary conditions
on microcontacts (figure 1.1). When the additional loading in two-interface
system (figure 1.2) occurs, the localization or controlling of free boundaries
evolution is possible.

The size and location of contact area as a whole are apriory unknown in
common case. For the microslip on granulars interfaces, initiated by bulk
deformation, when static (in stick region) and kinetic (in slip region) friction are
realized simultaneously the internal boundary between these specific zones



should be determined too. The frictional bond rupture is possible when tangential
stress reaches the critical value equal to local frictional force.
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Fig. 1.1. One - interface scheme of interaction in granular medium
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Fig. 1.2. Two - interface scheme of interaction in granular medium

The mathematical simulation of free boundaries creation and evolution
may be based on the variational inequalities when the classic contact problem
formulation is equivalent to the variational inequality solution or optimization
problem with limitations in the form of inequalities

J(u)= min max max [0,5 (a (w, w)—L(w)+j(w))]; (1)
wekK,p<0, z< f|p|



where a (w,w) = [a; ., €,,(w) &;(w) dw is qua dratic, L(w)= [ Fwds is
Q Sp
linear, j(w)= j[p;/ (x, W)(WT—UT)] ds
SC
1s nonlinear components of the functional, respectively.

A like model for adhesion failure description has been presented in [4]
using the physical analogy between static adhesion and dynamic frictional
contacting. The boundary of failure zone depends on relation of adhesive and
substrate strength, test conditions and other factors. Hence, the problem of free
boundary with limitations in the form of inequalities |7|<<7,, |7|<7,, p<p,

(where 7.,7,,p, are adhesive yield point, shear and gap adhesion strength,

accordingly) is formulated. The nonlinear term of functional (1) describing the
plastic flow of thin intermediate layer and damage of adhesive bonds for bilateral
contact may be expressed as:

v (W_ut+dt) = | [Tt+(rs—z';)%(ra—rs)](|wT—uT|)ds, (2)
S

with its relaxation and further partial rehabilitation according to the dependence

=1~k (¢)7 6, l(| ul —uf )/ dt J, (3)

a a

where k_ () is relaxation coefficient and 6, is Heaviside function.

For the simulation of deformation process we use the procedure based on
Udzava’s algorithm with the steps of contact parameters correction in time.

The boundary element method with simple approximation partitioning of
the surface region into linear segments have been used. The displacements at the
nodes of the formed mesh are determined with the use of the Green’s functions
for the studied type of elastic counterbody (boundary element method).

The numerical results provide the conclusion that the creation and
evolution of free internal boundary influence the deforming diagram of materials
studied and may be used for elasitic and non-elastic properties prediction. For the
mechanical analysis of supercompressible materials necessary to make it’s
structural unity (granular media, honeycomb structures, foams, etc.). The
localization method of structural unity modelling mentioned above may be used
for this goal.

2. The honeycomb structures

In realization of the super-compressibility effect anisotropy materials,
which show negative Poisson’s ratios in certain directions, are found to be



interest. That 1s why the two-dimensional rod system (figure 2.1), which can be
treated as a model of a porous material with regularly arranged honeycombs, has
been examined. A similar model was described earlier [5]. In the present work,
unlike that in [5], the rod elasticity has been accounted for and the relationship of
Poisson’s ratio to a number of parameters studied.
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Fig. 2.1. Two-dimensional rod system

v

2.1. The method of modeling

We characterized the deformational behavior of the material by the
behavior of a structural unit limited by a contour ABC (figure 2.1). Similarly to
the method described in another work [6] for a cellular material, we took the
given structural unit as a free body being in an equilibrium state (figure 2.2).



Fig. 2.2. Structural unit

We exchanged the bonds at the rod ends for the tensile P and bending Q.

forces. Under the action of these forces the points of their application got shifted
in relation to the point where the rods were joined. We assumed the relationship
between the strains and stresses to be defined with the help of two sets of
variables which include relative displacements of the rod ends and the forces
which led to those displacements. Having thus determined the tensor’s
components for elastic modules, it was possible to study the dependence of
Poisson’s ratio of this system v on the loading angle ¢, forming angle «, filler
volume ( volume fraction of the material of a rods ) V;and Young’s modulus of
the matrix material £,,.
Particularly, for the loading angles ¢ = 0 and ¢ = 7/2 the expression for v

can be written as follows:

(r—sin(a))sin(a)(5,, —5,,)
26, +8,, 08 (@) + 5, 5in’ (@)
cos” (a)sin(a)(Sy, = 5p,)

(r—sin(@))(8,, sin’ (@) + 6, cos’ (a))

V(g=0)=-

v(ig=nr/2)=-

Where 6, ,6p are the parameters having the meaning of rods’ compliance

found from the elasticity theory relationships and depending on the filler volume
V;, angle a and parameter 7, characterizing the ratio of length of the vertical b and
inclined a rods.

We assumed that for low values of V' the rod’s shape at bending loading
could be found from the known equation of bending. This assumption allows the



usage of the said method in accounting for the influence the matrix material on
the deformation characteristics. In a such case, by using Winkler’s hypothesis for
finding the compliance o, , the equation of bending must be solved for a

distributed loading that is proportional to the transverse displacements of the rod.
Winkler’s rigidity factor of the base depends on the elastic properties of the
matrix and the cell shape. In order to determine ¢, the first order differential

equation should be solved with taking into account the additional stress caused by
adhesion between the matrix and rods.

2.2. Results

Figure 2.3 shows the relationship of v to the loading angle ¢ for the
following parameter values: V,= 0.2, r = 2, a = 0.5 [rad], and Poisson’s ratio of
material of the rods v;= 0.1. With ¢ ~0 and ¢ ~ /2, Poisson’s ratio of the model
had negative values and there was a symmetry in the said relationship to the
coordinate axes 0X and 0Y;; this corresponds to the cell symmetry.
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Fig. 2.3. Relationship of Poisson’s ratio to the loading angle for V,= 0.2, r =2, o
=0.5 [rad], vy=0.1

The analysis of the relationship von the o revealed that with angle ¢ =0, v
would sharply become lower if the o was growing, whereas with ¢ = 7/2 the
Poisson’s ratio would tend to zero at high values of « (figure 2.4). This could be
explained by the fact that with increasing «, the degree of cell «concavity»
increased, and the bending rigidity of the rods also increased (figure 2.2).
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Fig. 2.4. Relationship of Poisson’s ratio on the forming angle for V,=0.1, r=2,
v=0.1

Figure 2.5 shows the relationship of Poisson’s ratio to the filler volume V.
The value can be seen to rise smoothly in the directions ¢ = 0 and ¢ = 772 when
V; was increased. This can be explained by that on increasing V; the rod

compliance became lower; the bending compliance O 0 would change at a higher

rate than O p-
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Fig. 2.5. Relationship of Poisson’s ratio to the filler volume for r = 3, o = 0.4
[rad], vi=0.1

The established relationship of characteristics 6Q , 0 p to Young’s

modulus for the matrix E,, was used to find a relationship of v to E,, (figure 2.6)
for the following parameter values: o = 0.5 [rad], V;= 0.2, r = 2, v, = 0.1 and
Young’s modulus of rods E~=15000 Pa. The calculations made showed, that on
increasing E,, Poisson’s ratio would grow in the directions ¢ = 0 and ¢ = /2,
since the material of matrix resisted bending more strongly than it did tension.
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Fig. 2.6. Relationship of Poisson’s ratio to Young’s modulus of the matrix for &
=0.5 [rad], Vi=0.2,r=2, vy= 0.1, E;= 15 KPa

2.3. Conclusion

The process of deformation was analyzed for an anisotropy super-
compressible material by means of assuming a separate structural unit with rod-
like elements. A linearly elastic state was assumed to determine the components
of a two-dimensional tensor of elastic modulus of the material. The relationship
of Poisson’s ratio to the loading angle, filler volume and filler properties was
examined. It was found out that the material in consideration showed a negative
Poisson’s ratio.

3. Foams

In modelling strained behaviour of foamed materials, a stressed cell system
is usually considered. From the analysis viewpoint of the anomalous elasticity
under question, the foamed polymeric materials with opened cells have been
most investigated. The existig interpretations of the negative Poisson’s ratios,
observed in the course of said foam deformation, have been based on the
possibility of inward motion of the walls of every cell [7]; also, a material
structure was assumed as formed by telescopically folded rods [2]. However, the
analysis of experimental fidings related to deformation of foams with closed
cells, as well as of their models, had been described in literature inadeguately.



3.1. The physical model

The physical model of a closed-cell foam material, produced either by
foaming a liguid substance or by microsphere compounding (in the case of
syntactic foam), or by microsphere caking (gluing). In order to determine the
elastic moduli, a fragment of this material can be represented as a set of bonded
thin-walled spherical shell; the picture corresponds a real foam structure (figure
3.1).

To obtain a structure with v<0, we have used the strong dependence of the
bending rigidity of elastic rods, plates and shells on the initial curvature,
according to the criterion, described elsewhere [8], in the form of tangential %, to

normal k, rigidities relation, viz., —~ < 0. Thus, positive values of Poisson’s

n
ratio for celled materials having a common structure, energetically favourable for
free foaming, result from the positive curvature of most cells. However, if the
volumetric compression was large, a part of the cell surface acquires first zero
then negative curvature.

We have conducted research and made an inference about the role of the
cell-size-nonuniformity factor in the deformation of foams. The said
nonuniformity was thought to result from different conditions of both the
formation and development of cells in the bulk (figure 3.2). The cells of small
size were found mostly to hold their original shape, but larger cells showed
relatively low rigidity, and when compressed, would get deformed similarly to
thin-walled shells, with a possibility of losing stability. Thus, the volumetric
compression of a foamed material i1s mainly realised at the expense of decreased
free volume of larger cells. Various modes of
stability loss can take place depending on the
loading regimes. Separation of cells according to
deformation levels was found to cause anomalous
elastic behavior in converted clozed-pore foams;
the anomaly is characterized by negative values of
Poisson’s ratio.

Fig. 3.1. Conventional
silicone rubber
foam [7]




It is worth mentioning, that the
given deformation behavior reguired
to reach a collapse, can be achieved
as a result of cooperative deformation
of the cell system, being symmetrical
along three coordinate axes, without
losing the cell continuity. The
pronounced symmetry and presence
of an adequate amount of particles
appeared to increase the isotropy of
the medium, as well as its
producibility. In view of all this, it
seems expedient to go from the
statistical description of a medium to
a local one on the scale of a structural
unit.

In view of the above, a
structural model is suggested of an
isotropic clozed-pore foamed
material. The model is a system of

stable (holding the original spherical shape) and convertible cells (figure 3.3). In
order to examine the deformation effects, a structural unit is taken off composed
of a central convertible cell and six satellite cells of a much smaller size, arranged

symmetrcally.

Fig. 3.2. Conventional
polyester foam [7]

Fig. 3.3. The model is a system of stable and convertible cells




This model of a material can be realized by foaming a thermoplastic
polymer, with making use of a pore former having fractions of two sizes. The
model can also be realized by producing a foam by way of regularly arranging
spherical cells of various sizes. A structural unit of a such material provides for a
possibility of its further conversion by means of all-round compression of the
initial mass; on a certain stage, this treatment can by combined with a thermal
treatment at temperatures within the softening range, and cooling down to the
room temperature with the purpose of retaining the obtained converted structure
(as shown in figure 3.4), maintaining the isotropy of the elastic properties.
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Fig. 3.4. The model is a system of stable and re-

entrant cells

The shear rigidity of a such system depends on the deformation
characteristics of the original material, whereas the normal rigidity depends on
the convertibility of the cells at the expense of the free volume. The structural
unit of a converted foam, formed in this manner, can possess the following
features:

e low normal rigidity as compared with the shear rigidity, thus satisfying the
criterion of high shear and low normal rigidities;



e prior conversion of the central cell owing to its relatively low rigidity towards
the satellites.

3.2. Computer test
In order to examine the deformation behaviour of foams by numerical

methods of mechanics, the finite-element approximation of a fragment of an
elastic heterogeneous medium was applied [9].
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Fig. 3.5. The discretization of regular cell structure fragment

Every structural unit was constructed and joined to neighbouring units by
means of eight triangular plate elemtnts simulating the characteristics of typical
subregions of the materials, eight rod elements arranged along the profile and
characterizing the reinforcement of the cell boundaries, and four rod elements to
connect the edge midpoints of the neighbouring structural units (figure 3.5).

By varying the ratio of Young’s moduli of the plate elements to rod
elements, one has a possibility to treat different heterogeneous materials, foams
included, as a limiting case of existing a phase with a zero elastic modulus.

The described model is equivalent to the suggested physical one since it
describes variations in the shape of cells at the expense of free volume, if
structural units are bonded to provide for the reguired deformation mode.

The method of finite element ( software ANSYS [10] ) was used to
calculate the displacement fields where a fragment of the converted structure with



concaved cells was stretched uniaxially. The calculation for detailing 3x3 and
5x5 structural units showed, that trasverse displacement of the nodal points
belonging to the right end of the fragment become positive, 1. €. the model gives
negative values of Poisson’s ratio (figure 3.6).
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